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Abstract—The synthesis and thermal rearrangement of bis-allenyl thiosulfonates are described. Bis-�,�-disubstituted allenyl
thiosulfonates have been prepared by disproportionation of the corresponding allenesulfinic acids. On heating, these compounds
unexpectedly rearrange to a mixture of 1H,3H-thieno[3,4-d ][1,2]oxathiine-3-oxide 8, 1H,3H-thieno[3,4-c ]thiophene-2,2-dioxide 9,
and 3-alkyl-4-alkenylthiophene 10. A tentative reaction mechanism involving sequential sigmatropic rearrangements and cycliza-
tions is suggested. © 2002 Elsevier Science Ltd. All rights reserved.

The [2,3]-sigmatropic rearrangements of propargylic
sulfenates and sulfinates to allenic sulfoxides and sul-
fones, respectively, were discovered by us during the
mid sixties and have received extensive application in
organic synthesis since then.1–4 In one such application
from our own laboratory, a combination of two [2,3]-
sigmatropic rearrangements was used to prepare bis-
�,�-dimethylallenyl sulfone 1. This sulfone undergoes a
facile cyclization on heating to the thiophene-1,1-diox-
ide 2 via a 2,2�-bisallyl type diradical intermediate
(Scheme 1).5

Subsequently, we also investigated the rearrangements
of diheteroatom bridged bisallenes. Thus, bisallenyl
disulfide 3 was found to undergo a tandem [3,3]-sigma-
tropic rearrangement and a double intramolecular
Michael addition to give the bicyclic compound 4
(Scheme 2).6

Prompted by these results, we decided to incorporate a
thiosulfonate moiety as a bisallenic bridge in order to

examine which of the above two reaction modes such
compounds would follow. In general, thiosulfonates
exhibit interesting properties. They are powerful
sulfenylating agents,7–10 with antimicrobial and fungici-
dal activities,11,12 and with some industrial applications
both in polymer production and in photographic
processes.13

Although many synthetic approaches are known for the
preparation of symmetrical and unsymmetrical thiosul-
fonates in general,10,14 their application for the prepara-
tion of allenic thiosulfonates is limited by the lack of
appropriate starting materials. The synthesis of bis-�,�-
dimethyl- and bis-�-cyclohexylallenyl thiosulfonates, 7a
and 7b, respectively, has been reported to take place by
disproportionation of the corresponding sulfinic acids,
which are produced in situ by hydrolysis of allenyl
sulfinamides (yields 11–34%).15 However, we have
found it more convenient to use a somewhat different
approach. Thus, sodium �,�-disubstituted allenesulfi-
nates 6a,b were prepared by hydrolysis of the corre-
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sponding sulfinate esters 5a,b under basic conditions
(Scheme 3). The latter are readily available from the
reaction of sulfur dichloride with the appropriately
substituted propargylic alcohols (Scheme 1). Sodium
allenesulfinates 6a,b were isolated in 80–85% yields as
white solids (mp >300°C), which were sensitive to
atmospheric moisture.16 Treatment of 6a,b with an
excess of methanesulfonic acid in DMSO generated the
corresponding sulfinic acids whose well known
disproportionation17 afforded thiosulfonates 7a,b
(Scheme 3). DMSO was found to be the best solvent for
the above transformation. Using methanol or biphasic
systems such as diethyl ether–water, large amounts of
�,�-unsaturated �-sultines18–20 were obtained as by-
products. In a typical procedure, sodium allenesulfinate
(5 mmol) was slowly added to a cooled solution (10°C)
of CH3SO3H (1 mL) in DMSO (5 mL). After 3 h under
vigorous stirring the reaction mixture was diluted with
CH2Cl2, followed by usual work-up. Thiosulfonates

7a,b were then purified by chromatography (silica gel,
ether–hexane 2:3).

Previously, it was reported that bis-�,�-dimethylallenyl
thiosulfonate 7a is unstable at room temperature.15

However, we have found that thiosulfonates 7a,b under
heating, undergo a series of rearrangement and cycliza-
tion reactions. Moreover, reaction rates and product
ratios are quite dependent on the nature of solvent and
temperature, respectively. Thus, we found that on heat-
ing in chloroform 7a afforded a mixture of 1,1,4,4-tet-
ramethyl-1H,3H-thieno[3,4-d ][1,2]oxathiine-3-oxide 8a,
1,1,3,3-tetramethyl-1H,3H-thieno[3,4-c ]thiophene-2,2-
dioxide 9a and 3-isopropyl-4-isopropenylthiophene 10a
(Scheme 4, Table 1, entry 1). When bis-�,�-dimethyl-
allenyl thiosulfonate 7a was heated below 40°C only
the first two products were formed (Table 1, entries
3 and 4). Furthermore, the reaction times decrease
with increasing polarity of the solvents. For example,

Scheme 2.

Scheme 3.

Scheme 4.

Table 1. Rearrangement products of bis-allenyl thiosulfonates 7a,b

Time (h)T (°C)SolventCompdEntry Yield (%)aProducts (ratio, %)

7a CHCl3 55 12 8a (47) 9a (6) 10a (47) 501
7a Me2CO 55 10 8a (66) 9a (8) 10a (26) 752

60–9a (9)8a (91)1203 40CHCl37a
DMSO 40 12 8a (72) 9a (28)4 –7a 80
CHCl37b 805 10b (52)9b (8)8b (40)12040

8510b (41)9b (17)8b (42)60407b DMSO6

a Total yield for isolated products.
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changing the solvent from CHCl3 to DMSO decreases
the reaction time by a factor of ten. Bis-�-cyclohexyl-
allenyl thiosulfonate 7b rearranged in a similar manner
to 7a (Scheme 4). Structure assignments of reaction
products have unequivocally been determined by 2D
NMR analysis.21

Although no experimental evidence in support of a
detailed reaction mechanism for the formation of the
various products is available, the effect of solvent
polarity on reaction rates seems to favour an ionic
mechanism. A tentative mechanism for the thermal
rearrangement of bis-allenyl thiosulfonates is shown in
Scheme 5. We assume that first, thiosulfonates 7a,b
undergo a [3,3]-sigmatropic rearrangement to give
intermediate 11. However, instead of rotation around
the central C�C � bond and cyclization similar to that
observed for bis-allenyl disulfides (Scheme 2),6 this
intermediate reacts by a different route. Intermediate 11
contains a sulfene moiety, which is well known for its
electrophilicity.22 Thus, an intramolecular nucleophilic
attack by the thioaldehyde sulfur atom on the sulfene
carbon atom generates the zwitterionic intermediate 12,
which has both a five-membered sulfonium ring and a
sulfinate anion moiety.

We suggest that subsequent cyclizations of 12 proceed
by two routes. [2,3]-Sigmatropic rearrangement of this
intermediate via path a leads to the formation of 13,
which then undergoes cycloaromatization to give

product 8 (Scheme 5). Alternatively, a [1,3]-sulfinate
migration of 12 via path b leads to formation of
intermediate 14, which on cyclization can afford both 8
and 9. The experimental data shows that in all cases
greater amounts of 8 are formed than 9. The ambident
character of the sulfinate anion is well known.23–25

Thus, the ring closure in intermediate 14 can proceed
by either sulfur or oxygen nucleophilic attack.
Although, the former is usually the more favored route
with neutral electrophiles the latter is the more domi-
nant with positively charged electrophiles. This, as well
as the formation of 8 via both mechanistic paths, may
account for the higher percentages of this product
relative to 9.

Thieno[3,4-d ][1,2]oxathiine-3-oxides 8a,b were found to
be unexpectedly stable under thermal conditions. Even
at 160°C they do not undergo isomerization to com-
pounds 9a,b or lose sulfur dioxide. In view of the
above, the formation of thiophene derivatives 10a,b,
most likely takes place via sulfur dioxide extrusion from
intermediate 11. The carbene formation from sulfene by
loss of sulfur dioxide has been previously reported.26

Expulsion of sulfur dioxide from sulfene 11 generates a
carbene which undergoes an addition reaction to the
thioaldehyde sulfur atom to give 15 (Scheme 6). The
latter rearranges via a radical mechanism to thiophene
derivatives 10, similar to the cyclization of 1 to 2
(Scheme 1).

Scheme 5.
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Scheme 6.
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